Predicting the energetics of osmolyte-induced protein folding/unfolding.

نویسندگان

  • Matthew Auton
  • D Wayne Bolen
چکیده

A primary thermodynamic goal in protein biochemistry is to attain predictive understanding of the detailed energetic changes that are responsible for folding/unfolding. Through use of recently determined free energies of side-chain and backbone transfer from water to osmolytes and Tanford's transfer model, we demonstrate that the long-sought goal of predicting solvent-dependent cooperative protein folding/unfolding free-energy changes (m values) can be achieved. Moreover, the approach permits dissection of the folding/unfolding free-energy changes into individual contributions from the peptide backbone and residue side chains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...

متن کامل

Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...

متن کامل

Structural details, pathways, and energetics of unfolding apomyoglobin.

Protein folding is often difficult to characterize experimentally because of the transience of intermediate states, and the complexity of the protein-solvent system. Atomistic simulations, which could provide more detailed information, have had to employ highly simplified models or high temperatures, to cope with the long time scales of unfolding; direct simulation of folding is even more probl...

متن کامل

Structure and energetics of the hydrogen-bonded backbone in protein folding.

We seek to understand the link between protein thermodynamics and protein structure in molecular detail. A classical approach to this problem involves assessing changes in protein stability resulting from added cosolvents. Under any given conditions, protein molecules in aqueous buffer are in equilibrium between unfolded and folded states, U(nfolded) <==> N(ative). Addition of organic osmolytes...

متن کامل

Osmolyte-induced folding of an intrinsically disordered protein: folding mechanism in the absence of ligand.

Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 42  شماره 

صفحات  -

تاریخ انتشار 2005